Open Discussion of Plans for Spatially Structured Molecules in BioNetGen and MCell

MMBioS TR&D2 Report 3/27/2018

Tom Bartol

Diffusion: Fick's Second Law

Applies when concentration in volume is changing in time (i.e. $J_{in} \neq J_{out}$)

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$

$$\frac{\partial c}{\partial t} = D\nabla^2 c$$

Free Diffusion: Concentration in Space and Time

$$\rho(r,t) = \frac{1}{\pi^{d/2} \lambda^d} e^{-r^2/\lambda^2}$$

$$\lambda = \sqrt{4Dt}$$

$$\tilde{r} = r/\lambda$$

$$\bar{l}_r = 2\sqrt{\frac{4D\Delta t}{\pi}}$$

$$\bar{l}_{\perp} = \sqrt{\frac{4D\Delta t}{\pi}}$$

Bimolecular Reactions:

Rate of Encounter of Particles with Collision Cross-section

Bimolecular Reactions: Derivation of probability of reaction per collision

$$A + B \stackrel{k}{\rightharpoonup} C$$

Probability of reaction between diffusing volume molecule and a surface molecule:

From rate of encounter:

$$p_{bt} = 1 - (1 - p_b)^{N_H} \approx N_H p_b$$
 $p_{bt} = k[A]_o \Delta t$

$$N_H = N_A \bar{l}_{\perp} A_{ET} [A]_o$$

From Mass Action:

$$p_{bt} = k[A]_o \Delta t$$

$$p_b = \frac{k}{N_A A_{ET}} \sqrt{\frac{\pi \Delta t}{D}}$$

Bimolecular Reactions: Collision Detection

Fractal Filigree Spatial Structure Emerges From Unordered Diffusion-Limited Aggregation

$$A + B \rightarrow B + B$$

Large-Scale Ordered Spatial Structure Emerges From Simple Local Assembly Rules

Assembly by aligning and docking binding site coordinates

Directed Transport Along Assembled Structures

Simple example of transport on filament with MCell3-macromol

Subaim 1.1 Spatially structured, multi-state multi-component molecules

Issues for Discussion

- 1) How to get coordinates of components (i.e. binding sites)?
 a) from PDB?
- 2) How to do diffusion of small complexes?

 a) aggregation of macromolecule members/components?
- 3) How to do diffusion of large complexes? a) tumbling?
- 4) How to do collision detection?
 - a) non-space-filling/non-crowding?
 - b) space-filling/crowding?
- 5) Other issues?